Μαθησιακά Αποτελέσματα
Με την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα:
1. θα έχουν εμπλουτίσει τις γνώσεις τους και θα είναι σε θέση να λύνουν προβλήματα του Λογισμού μίας μεταβλητής΄
2. θα έχουν εμπλουτίσει τις γνώσεις τους και θα είναι σε θέση να λύνουν προβλήματα Πραγματικής Ανάλυσης
3. θα έχουν εμπλουτίσει τις γνώσεις τους και θα είναι σε θέση να λύνουν προβλήματα Γραμμικής Άλγεβρας
4. θα έχουν εμπλουτίσει τις γνώσεις τους και είναι σε θέση να λύνουν προβλήματα Θεωρίας Πινάκων
5. θα είναι σε θέση να ανταποκριθούν σε προβλήματα που τίθενται σε διεθνείς φοιτητικούς διαγωνισμούς στα Μαθηματικά.
Περιεχόμενο Μαθήματος
Ανάλυση
1. Πραγματικοί και μιγαδικοί αριθμοί.
2. Αριθμητικές ακολουθίες και σειρές.
3. Συναρτήσεις μιας μεταβλητής: συνέχεια, παραγωγισιμότητα, τύπος Taylor, ολοκλήρωμα Riemann.
4. Ακολουθίες και σειρές συναρτήσεων: σημειακή και ομοιόμορφη σύγκλιση, παραγωγισιμότητα και ολοκληρωσιμότητα κατά όρο.
5. Δυναμοσειρές, στοιχειώδεις συναρτήσεις.
6. Μη γνήσιο ολοκήρωμα Riemann, συναρτήσεις ορισμένες από ολοκληρώματα (ολοκληρώματα Euler).
Άλγεβρα και Γεωμετρία
1. Γενικές έννοιες σχετικά με αλγεβρικές δομές: ομάδες, δακτύλιοι, σώματα.
2. Γενικές ιδιότητες πολυωνύμων με πραγματικούς και μιγαδικούς συντελεστές.
3. Διανυσματικοί χώροι πεπερασμένης διάστασης πάνω από το σώμα των πραγματικών ή των μιγαδικών αριθμών: βάση και διάσταση.
4. Γραμμικοί μετασχηματισμοί και πίνακες: ιδιοτιμές, ιδιοδιανύσματα, διαγώνια μορφή και εφαρμογές.
5. Τετραγωνικές μορφές. Αναλυτική γεωμετρία του επιπέδου και του χώρου: ευθείες, επίπεδα, κωνικές τομές.
Βιβλιογραφία μαθήματος (Εύδοξος)
1. Problems in Real Analysis: Advanced Calcuclus on the Real Axis, by T.-L. Radulescu, V. Radulescu, T. Andreescu. Springer, 2009.
2. Putnam and Beyond, by R. Gelca, T. Andreescu. Second edition, Springer 2017.
3. Essential Linear Algebra with Applications: A Problem Solving Approach, by T. Andreescu. Springer 2014.