Modern Control Theory

Course Information
TitleΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ / Modern Control Theory
Cycle / Level1st / Undergraduate
Teaching PeriodSpring
CoordinatorNikolaos Karampetakis
Course ID40000486

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 76
OrientationAttendance TypeSemesterYearECTS
CoreElective CoursesSpring-5

Class Information
Academic Year2017 – 2018
Class PeriodSpring
Faculty Instructors
Weekly Hours3
Class ID
Course Type 2016-2020
  • Scientific Area
  • Skills Development
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Language of Instruction
  • Greek (Instruction, Examination)
Learning Outcomes
Upon the successful completion of this course a student will be able to: a) transform the description of a linear, time-invariant, multivariable system to all possible descriptions (transfer function matrix, state space description etc. b) calculate and plot the time response of a state space system, c) transform of a given state space system to various canonical forms, d) design the block diagram and signal flow of a system described by state space equations, e) check system properties such as controllability , stabilizability, observability, and detectability, f) calculate and design a compensator capable to place the poles of the system to a specific region, g) calculate and design an optimal controller, h) calculate and design a system observer, i) create a controller that will use an oberver for the estimation of the states, j) to apply the separation principle.
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Adapt to new situations
  • Make decisions
  • Work in teams
Course Content (Syllabus)
State space models of LTI continuous time systems. Single input – single output systems. Multivariable systems. Block diagrams and realizations of state space models. Examples. System equivalence and state space coordinate transformations. Examples. Eigenvalues and eigenvectors. Diagolalization of matrices and diagonalization of state space models by coordinate transformations. State space realizations of transfer functions. State space system responses. Unit impulse and unit step response of state space models. LTI systems. Free and forced response of state space models. Canonical forms of state space models. Controllability. Observaability. Controllability and Obserability criteria. Stabilization of state space models and decoupling zeros. Stability of state space models. Eigenvalue criteria for stability. Asymptotic and BIO stability. State feedback. Eigenvalue assignment by state feedback. Constant output feedback. State Observers and state reconstruction. Stabilization by state observers and state feedback. The separation principle.
state space systems, modern control theory, controllability, observability, pole placement, observers, stability
Educational Material Types
  • Notes
  • Slide presentations
  • Book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
  • Use of ICT in Laboratory Teaching
  • Use of ICT in Communication with Students
Course Organization
Laboratory Work130.4
Student Assessment
- Written exams at the end of the semester. - Optional monitoring a laboratory course where the result of the examination will count 30% of the final score. The remaining 70% of the score will come from the final exams.
Student Assessment methods
  • Written Assignment (Summative)
  • Written Exam with Problem Solving (Formative, Summative)
  • Labortatory Assignment (Formative)
Course Bibliography (Eudoxus)
- Εισαγωγή στην Μαθηματική Θεωρία Σημάτων, Συστημάτων και Ελέγχου, Τόμος Β. Μοντέρνα Θεωρία Ελέγχου του Α. Βαρδουλάκη. - Γραμμικά συστήματα αυτομάτου ελέγχου των E. Charles, G. Donald, L. James, J. Melsa, C. Rohrs, D. Schultz. - Linear Systems [electronic resource] των P. J. Antsaklis, A. N. Michel.
Additional bibliography for study
1. Antsaklis P. and Michel A.N., 1977, Linear Systems, The McGraw-Hill Companies Inc. New York. 2. Chen C.T., 1970, Introduction to Linear System Theory, Holt, Renehart and Winston Inc. New York. 3. Kailath T., 1980, Linear Systems, Prentice Hall. 4. Wolovich W.A., 1974, Linear Multivariable Systems, Springer Verlag, New York.
Last Update