INTRODUCTION TO COMPUTATIONAL LINGUISTICS

Course Information
TitleΕΙΣΑΓΩΓΗ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΛΩΣΣΟΛΟΓΙΑ / INTRODUCTION TO COMPUTATIONAL LINGUISTICS
CodeΓΛΩ397
FacultyPhilosophy
SchoolPhilology
Cycle / Level1st / Undergraduate
Teaching PeriodWinter/Spring
CommonYes
StatusActive
Course ID280006581

Programme of Study: UPS School of Philology 2015

Registered students: 11
OrientationAttendance TypeSemesterYearECTS
Glōssologías Mandatory Elective CoursesWinter/Spring-6

Class Information
Academic Year2017 – 2018
Class PeriodWinter
Faculty Instructors
Total Hours39
Class ID
600104545
Course Type 2016-2020
  • Background
Course Type 2011-2015
General Foundation
Mode of Delivery
  • Face to face
Digital Course Content
Language of Instruction
  • Greek (Instruction, Examination)
Learning Outcomes
• Learning of the basic principles and problems in Computational Linguistics. • Familiarizing with basic concepts and strategies of algorithmic problem solving. • Learning of basic data structures in programming with Python. • Connection between theory and praxis by modeling and implementing grammatical phenomena through programming. • Capability of implementing small scale computational projects of natural language processing. • Learning markup/annotation strategies with XML.
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Make decisions
  • Work in teams
Course Content (Syllabus)
A) Basic notions of formal languages B) COmputer memory, variables, data types: string manipulation, lists and methods in python C) Phrase Structure Grammars ( Context-free grammars) D) Control structures (while, for and if) I E) Phrase Structure Grammars ( Context-sensitive grammars) F) Control structures (while, for and if) II and functions in python I G) Functions in Python II H) Finite State Automata and morphology I I) Finite State Automata and morphology II J) Data type "dict" and creation of a small scale greek grammar in python K) Corpus Processing with Python and various custom software I L) Corpus Processing with Python and various custom software II M) Corpus Annotation in XML I N) M) Corpus Annotation in XML II
Keywords
Formal Languages, Chomsky Hierarchy, Finite State Automata, Phrase-structure Grammars, Corpora, Python, XML
Educational Material Types
  • Notes
  • Slide presentations
  • Scientific papers
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
  • Use of ICT in Laboratory Teaching
  • Use of ICT in Communication with Students
Description
The course is taking place in a computer lab. All theoretical concepts are explicated on the basis of programming examples in Python and XML.
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures281
Laboratory Work843
Written assigments281
Exams281
Total1686
Student Assessment
Student Assessment methods
  • Written Exam with Short Answer Questions (Summative)
  • Written Assignment (Formative)
  • Written Exam with Problem Solving (Formative, Summative)
  • Labortatory Assignment (Formative)
Bibliography
Course Bibliography (Eudoxus)
Fromkin V., R. Rodman & N. Hyams. (2008). Εισαγωγή στη μελέτη της γλώσσας (μτφρ. Γ. Ξυδόπουλος, Φ. Παπαδοπούλου, Έ. Βάζου & Α. Τσαγγαλίδης). Αθήνα: Εκδόσεις Πατάκη. Τάντος, Α., Μαρκαντωνάτου, Σ., Αναστασιάδη-Συμεωνίδη, Ά., Κυριακοπούλου, Π., 2015. Υπολογιστική γλωσσολογία. [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο στο: http://hdl.handle.net/11419/2205
Additional bibliography for study
Jurafsky, D. & J. H. Martin. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 2nd edition. Prentice-Hall. Partee B., A. Ter Meulen & R. E. Wall (1990). Mathematical Methods in Linguistics. Dordrecht/Boston/London: Kluwer Academic Publishers.
Last Update
05-02-2020