COMPUTATIONAL GEOMETRY

Course Information
TitleΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΜΕΤΡΙΑ / COMPUTATIONAL GEOMETRY
CodeNIS-08-03
FacultySciences
SchoolInformatics
Cycle / Level1st / Undergraduate
Teaching PeriodSpring
CoordinatorApostolos Papadopoulos
CommonNo
StatusActive
Course ID40002981

Programme of Study: PPS-Tmīma Plīroforikīs (2019-sīmera)

Registered students: 2
OrientationAttendance TypeSemesterYearECTS
GENIKĪ KATEUTHYNSĪElective Courses845

Class Information
Academic Year2017 – 2018
Class PeriodSpring
Faculty Instructors
Weekly Hours3
Class ID
600104764
Course Type 2016-2020
  • Scientific Area
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
Language of Instruction
  • Greek (Instruction, Examination)
  • English (Examination)
Prerequisites
Required Courses
  • NCO-02-03 DATA STRUCTURES
  • NCO-04-03 ALGORITHMS
Learning Outcomes
• Learning of basic algorithmic techniques in computational geometry. • Learning of analysis and design tools with emphasis in computational geometry. • Applications and programming of such algorithms.
General Competences
  • Make decisions
  • Work autonomously
  • Work in teams
  • Advance free, creative and causative thinking
Course Content (Syllabus)
Line segment intersection, Polygon Triangulation, Linear Programming, Orthogonal range searching, Point location, Voronoi diagrams, Delaunay triangulations, Geometric data structures, Convex hulls, Binary space partitions, Visibility graphs.
Keywords
Geometric data structures, Triangulation, Range searching, Segment intersection, Convex Hulls
Educational Material Types
  • Slide presentations
  • Book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures39
Reading Assigment48
Written assigments60
Exams3
Total150
Student Assessment
Description
One can find this information in the course webpage.
Student Assessment methods
  • Written Exam with Short Answer Questions (Formative, Summative)
  • Written Exam with Problem Solving (Summative)
Bibliography
Course Bibliography (Eudoxus)
1. ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΜΕΤΡΙΑ - ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, DE BERG MARK, CHEONG OTFRIED, VAN KREVELT MARC, OVERMARS MARK, ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ, 2011. 2. ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΜΕΤΡΙΑ: ΜΙΑ ΣΥΓΧΡΟΝΗ ΑΛΓΟΡΙΘΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΓΙΑΝΝΗΣ Ζ. ΕΜΙΡΗΣ, ΕΚΔΟΣΕΙΣ ΚΛΕΙΔΑΡΙΘΜΟΣ ΕΠΕ, 2008.
Additional bibliography for study
1. J. O'Rourke, Computational Geometry in C, Cambridge University Press, 2nd edition, 1998. 2. F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer, New York, 1985. 3. Handbook of Discrete and Computational geometry.
Last Update
15-06-2016