Course Content (Syllabus)
Introduction. Need for numerical analysis in chemical engineering. Numerical solution of SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS. Gauss Elimination – Pivoting – LU Decomposition. Iterative Methods. NON LINEAR ALGEBRAIC EQUATIONS. Picard and Newton methods for a single equation. Newton-Raphson method – solution of systems of non linear algebraic equations. INTERPOLATION AND CURVE FITTING: Lagrange interpolation, Newton interpolation, Splines. NUMERICAL INTEGRATION: Newton- Cotes formulas, the trapezoidal rule, Simpson's rules, Gauss quadrature. ORDINARY DIFFERENTIAL EQUATIONS – INITIAL VALUE PROBLEMS. Explicit and implicit Euler methods. Euler Predictor-Corrector. 4th order Runge-Kutta. Systems of ODE-IVP. Numerical Stability. Stiffness, step size control, errors. ORDINARY DIFFERENTIAL EQUATIONS – BOUNDARY VALUE PROBLEMS. Finite Differences for the solution of a single equation. Systems of equations.
COMPUTER LAB: Introduction to MATLAB. Plotting. M-files. Application of Gauss Elimination for the solution of systems of linear algebraic equations. Computational cost. Ill Conditioning. Jacobi and Gauss-Seidel methods. Convergence. Picard and Newton-Raphson method – solution of a unique NL algebraic equation. Solution of systems on NL algebraic equations. Application of Euler and Runge-Kutta Method methods for the solution of an ODE-IVP equation. Effect of step size. Solution of systems of ODE-IVP. Stability. Stiffness.
Keywords
linear systems, non-linear systems, ODE-IVP, ODE-BVP, numerical error, matrix condition, iterative method, stiffness, finite differences
Course Bibliography (Eudoxus)
Αριθμητικές μέθοδοι για προβλήματα μηχανικής, Πρ. ΝΤΑΟΥΤΙΔΗΣ, Σπ. ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ, Ευμ. ΣΙΔΗΡΟΠΟΥΛΟΥ, εκδ.ΑΝΙΚΟΥΛΑ 2010
Αριθμητικές μέθοδοι για μηχανικούς, S. C. Chapra S. & R. P. Canale, (7η εκδοση)., εκδ. ΤΖΙΟΛΑ 2017
Αριθμητικές υπολογιστικές μέθοδοι στην επιστήμη και τη μηχανική,C.POZRIKIDIS, εκδ. ΤΖΙΟΛΑ 2006