MODELS AND THEORY OF MOLECULAR AND ATOMIC PROCESSES

Course Information
TitleΜΟΝΤΕΛΑ ΚΑΙ ΘΕΩΡΙΕΣ ΜΟΡΙΑΚΩΝ ΚΑΙ ΑΤΟΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ / MODELS AND THEORY OF MOLECULAR AND ATOMIC PROCESSES
CodeMΝΝ216
FacultySciences
SchoolPhysics
Cycle / Level2nd / Postgraduate
Teaching PeriodSpring
CommonNo
StatusActive
Course ID40002895

Programme of Study: PPS Nanosciences & Nanotechnology (2007-today)

Registered students: 0
OrientationAttendance TypeSemesterYearECTS
CoreElective Courses217.5

Class Information
Academic Year2018 – 2019
Class PeriodSpring
Faculty Instructors
Instructors from Other Categories
  • Milan Damnjanovic
Weekly Hours3
Class ID
600133620
Type of the Course
  • Scientific Area
Course Category
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
Language of Instruction
  • Greek (Instruction, Examination)
Course Content (Syllabus)
Approach Born - Oppenheimer - Surface dynamic energy of reactive molecules - Allocation functions - Transient State Theory (T. S. T.) - Transport Phenomena - Chemical reactions controlled partially from the diffusion - Kramers theory - Oxidation-reduction chemical reactions, Marcus Theory - Effect of tunnelling phenomenon in chemical reactions - Kinetic isotope phenomenon - Introduction in Femto - Chemistry. Phenomenology of dynamics of crystal lattices. Models of phenomena of diffusion of atoms and imperfections in crystal lattices. Numerical simulations in nanomaterials with techniques and theory such as: Density functional theories (DTF) for Ab initio calculations, tight-binding approximation (TBA) suitable for extension for semi-infinite crystal systems. This course constitutes an introduction into the Biomedical Engineering Science dealing with Computational Cardiovascular Engineering. The usage of Fluid Mechanics science is involved. An analysis of the biomechanical factors affecting the vascular pathology is performed and the emphasis is put on Wall Shear Stress. Various Cardiovascular Engineering applications are set and their solution is sought.
Keywords
Computational Fluid Mechanics, Cardiaovascular Engineering, Vascular system, Wall Shear Stress
Educational Material Types
  • Notes
  • Slide presentations
  • Multimedia
  • Book
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Laboratory Work80.3
Interactive Teaching in Information Center100.3
Written assigments20.1
Total200.7
Bibliography
Additional bibliography for study
1. Glagov S: Hemodynamic risk factors: Mechanical stress, mural architecture, medial nutrition and the vulnerability of arteries to atherosclerosis. In Wissler, RW and Geer JC (eds): The Pathogenesis of Atherosclerosis. Baltimore, Williams and Wilkins, 1972, p 164. 2. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 1990 Apr; 66(4):1045-66. 3. Gimbrone MA Jr, Resnick N, Nagel T, Khachigian LM, Collins T, Topper JN. Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 1997 Apr 15; 811:1-10; discussion 10-1 4. Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 1968 Feb; 22(2):165-97. 5. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 1971 Feb 16; 177(46): 109-59 6. Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988 Oct; 112(10): 1018-31 7. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983 Oct; 53(4): 502-14 8. Thubrikar MJ, Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 1995 Jun; 59(6): 1594-603. 9. G.D. Giannoglou, J.V. Soulis, T.M. Farmakis, G.E. Louridas. Computational fluid dynamics analysis in a coronary artery bifurcation stenosis model. In Navarro-Lopez (ed): “XXI st Congress of the European Society of Cardiology, August 28 – September 1, 1999”. Bologna-Italy 1999. Monduzzi Editore, pp 409-413. 10. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985 May-Jun; 5(3): 293-302. 11. Salzar RS, Thubrikar MJ, Eppink RT. Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J Biomech. 1995 Nov; 28(11): 1333-40. 12. Robicsek F, Thubrikar MJ. The freedom from atherosclerosis of intramyocardial coronary arteries: reduction of mural stress--a key factor. Eur J Cardiothorac Surg. 1994; 8(5): 228-35. 13. G.D. Giannoglou, J.V. Soulis, T.M. Farmakis, D.M. Farmakis, G.E. Louridas. Coronary Vessel Wall Thickening in Relation to Velocity and Viscosity Distribution. Computers in Cardiology 2000; 27: 683-686 14. T.M. Farmakis, J.V. Soulis, G.D. Giannoglou, G.A. Giannakoulas, G.J. Zioupos, G.E. Louridas. Do spatial wall shear stress gradients affect left coronary atherosclerosis location? Eur Heart J. 2002; 23:686 15. T.M. Farmakis, J.V. Soulis, G.D. Giannoglou, G.E. Louridas. Does wall shear stress correlate to wall shear stress gradient in left coronary artery tree? Implications to atherogenesis. Eur Heart J. 2003; 24:328 16. Giannoglou GD, Soulis JV, Farmakis TM, Farmakis DM, Louridas GE. Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. Int J Cardiol. 2002 Nov; 86(1):27-40. 17. Modeling in biomedical research: An assessment of current and potential approaches. NIH Technol. Assess Statement Online 1989 May 1-3; (4):19. 18. Computers in Cardiology. Δικτυακός τόπος, URL: http://www.cinc.org 19. The Working Group “Computers in Cardiology” of the European Society of Cardiology. Δικτυακός τόπος: http://www.escardio.org/WG15/ 20. Σούλης ΙΒ. Υδραυλική κλειστών αγωγών. Ξάνθη. 2000. 21. Σούλης ΙΒ. Υπολογιστική Μηχανική Ρευστών. Ξάνθη. 2004 22. Ζιούπος ΓΙ. Υπολογιστική ανάλυση 2D και 3D σταθερής και ασταθούς στρωτής ροής σε κλειστούς αγωγούς. Μεταπτυχιακή διατριβή. Τομέας Υδραυλικής Μηχανικής. Τμήμα Πολιτικών Μηχανικών. Πολυτεχνική Σχολή. Δημοκρίτειο Πανεπιστήμιο Θράκης. Ξάνθη. 2003 23. Argyris J, Kesley S. Energy theorems and Structural Analysis. London. Butterworth Scientific Publications, 1960. 24. Martin HC. Introduction to Matrix Methods of Structural Analysis. New York. McGraw-Hill, 1966. 25. Martin HC, Carey GF. Introduction to Finite Element Analysis. New York. McGraw-Hill, 1973. 26. Robinson J. Early FEM Pioneers. London. Pitman Press, 1985. 27. Burnett DS. Finite Element Analysis. Reading, Massachusetts. Addison-Wesley, 1987. 28. Kleinstreuer C. Engineering Fluid Dynamics. An Interdisciplinary Systems Approach. Cambridge University Press, 1997. 29. Giannoglou GD, Soulis JV, Farmakis TM, Farmakis DM, Louridas GE. Near wall viscosity distribution between inner and outer right coronary artery wall. In: Lewis BS, Halon DA, Flugelman MY, Touboul P, editors, Proceedings of the 3rd International Congress on Coronary Artery Disease. Coronary Artery Disease, Prevention to Intervention. Monduzzi Editore-International Proceedings Division. Bologna-Italy 2000, pp. 221-6. 30. Giannoglou GD, Soulis JV, Farmakis TM, Farmakis DM, Louridas GE. Shear stress distribution between inner and outer right coronary artery wall at resting conditions. Eur Heart J 1999; 20(Abstr Suppl):646. 31. Slager CJ, Wentzel JJ, Schuurbiers JC, Oomen JA, Kloet J, Krams R, von Birgelen C, van der Giessen WJ, Serruys PW, de Feyter PJ. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation. 2000 Aug 1; 102(5):511-6. 32. Davids N. Finite element methods of studying mechanical factors in blood flow. Neurol Res. 1981; 3(1):83-105. 33. Satcher RL Jr, Bussolari SR, Gimbrone MA Jr, Dewey CF Jr. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J Biomech Eng. 1992 Aug; 114(3): 309-16. 34. Nerem RM. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng. 1992 Aug; 114(3): 274-82 35. Gertz SD, Roberts WC. Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol 1990 Dec 1; 66(19):1368-72. 36. Xu XY, Collins MW. A review of the numerical analysis of blood flow in arterial bifurcations. Proc Inst Mech Eng [H]. 1990; 204(4):205-16. 37. Loree HM, Kamm RD, Atkinson CM, Lee RT. Turbulent pressure fluctuations on surface of model vascular stenoses. Am J Physiol. 1991 Sep; 261(3 Pt 2): H644-50. 38. Yamaguchi T. A computational fluid mechanical study of blood flow in a variety of asymmetric arterial bifurcations. Front Med Biol Eng. 1993; 5(2):135-41. 39. Ilegbusi OJ, Hu Z, Nesto R, Waxman S, Cyganski D, Kilian J, Stone PH, Feldman CL. Determination of Blood Flow and Endothelial Shear Stress in Human Coronary Artery in Vivo. J Invasive Cardiol. 1999 Nov; 11(11):667-674. 40. Van Langenhove G, Wentzel JJ, Krams R, Slager CJ, Hamburger JN, Serruys PW. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation. 2000 Jul 18; 102(3):E22-4. 41. Wentzel JJ, Gijsen FJ, Stergiopulos N, Serruys PW, Slager CJ, Krams R. Shear stress, vascular remodeling and neointimal formation. J Biomech. 2003 May; 36(5):681-8. 42. Lee RT, Kamm RD. Vascular mechanics for the cardiologist. J Am Coll Cardiol 1994 May; 23(6): 1289-95.
Last Update
19-08-2013