Learning Outcomes
The scope of the course is the introduction of concepts and methods of data analysis, as well as their application to real-world problems. Within the framework of application the scope is the use of relevant software.
Course Content (Syllabus)
Introduction: definitions, data, examples. Probability and random variables: fundamentals on probability, distributions, parameters of distributions, basic distributions. Elements of statistics: parameter estimation and hypothesis testing. Uncertainty and measurement error: systematic and random errors, error propagation. Correlation and regression: correlation, simple and multiple regression, linear and nonlinear regression. Time series: basic characteristics of time series, correlation in time series.
Keywords
data analysis, statistics, probability, time series
Additional bibliography for study
1. Εφαρμοσμένη Στατιστική, Μπόρα-Σέντα Ε. και Μωυσιάδης Χ., Εκδόσεις Ζήτη, Θεσσαλονίκη 1997
2. Computational Statistics Handbook with MATLAB, Martinez W.L. and Martinez A.R., Chapman and Hall, 2002
3. Exploratory Data Analysis with MATLAB, Martinez W.L. and Martinez A.R., Chapman and Hall, 2005
4. Statistical Techniques for Data Analysis, Taylor J.K. and Cihon C., Chapman and Hall, 2004
5. Making Sense of Data, A Practical Guide to Exploratory Data Analysis and Data Mining, Myatt G.J., Wiley-Interscience, 2007
6. Time Series Analysis, Forecasting and Control, Box G.E.P., Jenkins G.M. and Reinsel G.C., Prentice Hall, 1994
7. Hyperstat, βιβλίο στο διαδίκτυο (online Book): http://davidmlane.com/hyperstat/
8. Concepts and Applications of Inferential Statistics, Lowry R., βιβλίο στο διαδίκτυο (online book): http://faculty.vassar.edu/lowry/webtext.html