Learning Outcomes
Upon successful completion of the course students will:
1. have understood the importance of mathematical models in solving optimization problems.
2. Can model elementary linear and nonlinear (dynamic) problems.
3. Apply the Simplex method to solve linear problems.
4. Solve elementary dynamic programming problems such as: Elementary Transportation and Assignment problems, Tool Replacement, and Minimum-Cost Network Flow Problems.
Course Content (Syllabus)
Mathematical models. Linear programming. Graphical solution and
graphical analysis of the sensitivity of the linear model. Simplex method. Introduction to Integer Programming. Transportation problem. Principles of dynamical programming. Non-linear methods of optimization. Applications.
Course Bibliography (Eudoxus)
- Εισαγωγή στην Επιχειρησιακή Ερευνα : Αλγόριθμοι & Εφαρμογές, Ν. Τσάντας, Π.-Χ. Γ. Βασιλείου, Ζήτη, 2000.
- Γραμμικός Προγραμματισμός : Θεωρία και ασκήσεις, Σ. Κουνιάς, Δ. Φακίνος, Ζήτη, 1999.