Course Information
TitleΣΤΑΤΙΣΤΙΚΗ / Statistics
Cycle / Level1st / Undergraduate
Teaching PeriodWinter
Course ID40000521

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 357
OrientationAttendance TypeSemesterYearECTS
CoreCompulsory Course537

Class Information
Academic Year2020 – 2021
Class PeriodWinter
Faculty Instructors
Weekly Hours6
Class ID
1. ΦΡΟΝΤΙΣΤΗΡΙΟGeorgios Afendras
2. ΤΜΗΜΑ ΑGeorgios Afendras
Course Type 2021
General Foundation
Course Type 2016-2020
  • General Knowledge
  • Scientific Area
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Distance learning
The course is also offered to exchange programme students.
Language of Instruction
  • Greek (Instruction, Examination)
General Prerequisites
probability theory I, probability theory II
Learning Outcomes
The aim is to understeand the basic statistical methods in order to use theme in real problems
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Make decisions
  • Work autonomously
  • Work in teams
  • Work in an international context
  • Work in an interdisciplinary team
  • Generate new research ideas
  • Design and manage projects
  • Advance free, creative and causative thinking
Course Content (Syllabus)
An introduction to the Mathematical Statistics. Families of distributions, Exponential family of distribution family - E.F.D., Sufficient and Complete statistics (Fisher–Neyman factorization theorem and use of E.F.D.), Unbiased Minimum Variance Estimator, Cramér-Rao Inequality, Efficient Estimator, Consistent Estimators, Maximum Likelihood Estimators and Moment Estimators, Confidence intervals, Hypothesis Tests (Neyman-Pearson Lemma).
Point Estimation, Interval Estimation, Hypothesis Testing
Educational Material Types
  • Notes
  • Video lectures
  • Book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
  • Use of ICT in Communication with Students
Course Organization
Reading Assigment1033.4
Student Assessment
Student Assessment methods
  • written exams (Summative)
Course Bibliography (Eudoxus)
Βιβλίο [45263]: Εισαγωγή στη Στατιστική ΜΕΡΟΣ Ι, Δαμιανού Χ.,Κούτρας Μ. Βιβλίο [11098]: Κολυβά-Μαχαίρα, Φ. (1985). Μαθηματική Στατιστική, Τόμος Ι, Εκτιμητική. Εκδόσεις Ζήτη, Θεσσαλονίκη Ηλεκτρονικό βιβλίο [320117]: Κολυβά-Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο στο: Βιβλίο [22682832]: Βασικές μέθοδοι εκτίμησης παραμέτρων. Ηλιόπουλος Γιώργος Βιβλίο [22888]: Παπαϊωάννου, Τ. & Φερεντίνος, Κ. (2002). Μαθηματική Στατιστική, 2η Έκδοση. Εκδόσεις Σταμούλη, Αθήνα
Additional bibliography for study
Bickel, P. J. & Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day Inc. Casella , G. & Berger, J. O. (2001). Statistical Inference, 2nd Edition. Brooks Cole. Fraser, D. A. (1967). Statistics: An Introduction. John Wiley & Sons Inc. Graybill, F. A. (1974). Introduction to the Theory of Statistics, 3rd edition. McGraw Hill. Hogg, R. V. & Tanise, E. A. (1977). Probability and Statistical Inference. Collier-MacMillan International Editions. Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco. Lehmann, E. L. (1983). Theory of Point Estimation. John Wiley and sons, Inc., New York. Mood, A., Graybill, F. & Boes, D. (1974). Introduction to the Theory of Statistics, 3rd edition. McGraw Hill. Rao, C. R. (2008). Linear Statistical Inference and its Applications, 2nd edition. Wiley Series on Probability and Statistics. Rice, J. A.(1994). Mathematical Statistics and Data Analysis, 2nd edition. Duxbury Press. Roussas, G. (2003). An Introduction to Probability and Statistical Inference. Academic Press. An imprint of Elsevier Science.
Last Update