Learning Outcomes
At the end of the course, the students will be able to:
1. Identify the type of problems that can be solved using Bioinformatics methods.
2. Select and appropriately use available databases and tools.
3. To develop and execute bioinformatics pipelines.
4. To understand the usage and importance of Bioinformatics in personalized diagnostics and therapeutics.
Course Content (Syllabus)
The course will cover the analysis of multiple -omics data at different scales, starting from introductory concepts and basic algorithms such as alignment, weight matrices etc. At each -omic level, e.g. genomics, transcriptomics, proteomics different approaches will be described and applied through medical-oriented hands-on exercises. The course will also introduce the main high-throughput sequencing technologies and example pipelines for the analysis and interpretation of huge datasets through user-friendly platforms.
Keywords
bioinformatics, algorithms, workflows, high-throughput data analysis, computational -omics
Additional bibliography for study
Αποθετήριο ηλεκτρονικών συγγραμμάτων “Κάλλιπος”:
1. Μπάγκος, Π., 2015. Βιοπληροφορική. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο δωρεάν στο: http://hdl.handle.net/11419/5016
2. Νικολάου, Χ., Χουβαρδάς, Π., 2015. Υπολογιστική βιολογία. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο δωρεάν στο: http://hdl.handle.net/11419/1577