Learning Outcomes
Cognitive: The students will acquire knowledge related to Line segment intersection, Polygon Triangulation, Linear Programming, Orthogonal range searching, Point location, Voronoi diagrams, Delaunay triangulations, Geometric data structures, Convex hulls, Binary space partitions, Visibility graphs.
Skills:
• Learning of basic algorithmic techniques in computational geometry.
• Learning of analysis and design tools with emphasis in computational geometry.
• Applications and programming of such algorithms.
Course Content (Syllabus)
Line segment intersection, Polygon Triangulation, Linear Programming, Orthogonal range searching, Point location, Voronoi diagrams, Delaunay triangulations, Geometric data structures, Convex hulls, Binary space partitions, Visibility graphs.
Keywords
Geometric data structures, Triangulation, Range searching, Segment intersection, Convex Hulls
Course Bibliography (Eudoxus)
1. ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΜΕΤΡΙΑ - ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, DE BERG MARK, CHEONG OTFRIED, VAN KREVELT MARC, OVERMARS MARK, ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ, 2011.
2. ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΜΕΤΡΙΑ: ΜΙΑ ΣΥΓΧΡΟΝΗ ΑΛΓΟΡΙΘΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΓΙΑΝΝΗΣ Ζ. ΕΜΙΡΗΣ, ΕΚΔΟΣΕΙΣ ΚΛΕΙΔΑΡΙΘΜΟΣ ΕΠΕ, 2008.
Additional bibliography for study
1. J. O'Rourke, Computational Geometry in C, Cambridge University Press, 2nd edition, 1998.
2. F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer, New York, 1985.
3. Handbook of Discrete and Computational geometry.