TEACHING MATHEMATICS: BASIC THEORIES AND PRACTICES

Course Information
TitleΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ: ΒΑΣΙΚΕΣ ΘΕΩΡΙΕΣ ΚΑΙ ΠΡΑΚΤΙΚΕΣ / TEACHING MATHEMATICS: BASIC THEORIES AND PRACTICES
CodeΥΜ15
FacultyEducation
SchoolPrimary Education
Cycle / Level1st / Undergraduate
Teaching PeriodWinter/Spring
CoordinatorDespoina Desli
CommonYes
StatusActive
Course ID600017601

Programme of Study: PPS Tmīmatos Dīmotikīs Ekpaídeusīs (2019-sīmera)

Registered students: 4
OrientationAttendance TypeSemesterYearECTS
KORMOSCompulsory Course534

Class Information
Academic Year2020 – 2021
Class PeriodSpring
Faculty Instructors
Weekly Hours3
Total Hours39
Class ID
600183301

Class Schedule

Building
Floor-
HallΕξ αποστάσεως (900)
CalendarΔευτέρα 12:00 έως 15:00
Course Type 2016-2020
  • Background
  • General Knowledge
  • Scientific Area
  • Skills Development
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
Language of Instruction
  • Greek (Instruction, Examination)
Learning Outcomes
By the end of the course students will demonstrate that they have: • Extended their understanding of the theoretical approaches in mathematics education and examined the forces that have shaped recent changes in mathematics education in primary school. • Been able to search and select teaching approaches in mathematics that enhance children’s creative learning • Developed their understanding of foundational mathematics concepts and procedures and their place in the teaching and learning of mathematics. • Learned to design mathematical activities in primary school that place an emphasis on effective teaching strategies. • Reflected on the pedagogy of teaching mathematics and on the teaching approaches they use most and least frequently and why.
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Adapt to new situations
  • Work in teams
  • Generate new research ideas
  • Appreciate diversity and multiculturality
  • Be critical and self-critical
  • Advance free, creative and causative thinking
Course Content (Syllabus)
This course serves as an introduction to current mathematics education thinking and practice in grades 1-6. In particular, this course focuses on research on the learning of mathematics and is designed to provide students with an understanding of how young children learn mathematics. The following issues are examined: • What is mathematics? What does it mean ‘to know’ or ‘to do mathematics’? • Mathematical concepts and ideas. Learning environments for teaching mathematics. • Major learning theories that have guided mathematics education (behaviourism, constructivism, sociocultural/sociohistorical perspectives) • Current issues related to the goals, content and programs in mathematics education. • Teaching and learning in various content domains of the mathematics curriculum in primary school: o Number, number sense, representations of number, number systems, number symbolism, counting. o Operations - Additive and multiplicative situations, development of children’s additive and multiplicative reasoning, children’s formal and informal strategies. o Fractions, decimals, proportions, percentage. o Measurement and geometry o Problem solving: procedures in problem solving, teaching with problem solving, problem-solving strategies o Data analysis and probability
Educational Material Types
  • Notes
  • Slide presentations
  • Book
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures782.6
Reading Assigment291.0
Written assigments100.3
Exams30.1
Total1204
Student Assessment
Student Assessment methods
  • Written Exam with Extended Answer Questions (Formative)
  • Written Assignment (Formative)
Bibliography
Course Bibliography (Eudoxus)
Σύγγραμμα 1 van de Walle, Lovin, L.H., Karp, K.S., & Bay-Williams, J.M. (2017). Μαθηματικά από το νηπιαγωγείο ως το Γυμνάσιο. Αθήνα: Gutenberg. (κωδικός: 68378345) Σύγγραμμα 2 van de Walle, J. (2007). Διδάσκοντας μαθηματικά για δημοτικό και γυμνάσιο. Θεσσαλονίκη: Επίκεντρο. (κωδικός: 14929)
Additional bibliography for study
Βοσνιάδου, Σ. (1998, επιμ.). Η ψυχολογία των μαθηματικών. Αθήνα: Gutenberg. Diezmann, M.C., Watters, J.J. & English, L.D. (2001). Difficulties confronting young children undertaking investigations. In M. Van Den Heuvel-Penhuizen (ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 289-296). Utrecht, The Netherlands: Utrecht University. Elia, I. & Gagatsis, A. (2006). The effects of different modes of representation on problem solving: Two experimental programs. In J. Novotna, H. Moraova, M. Kratka & N. Stehlikova (eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 25-32). Prague: PME. Ζαχάρος, Κ. (2006). Οι μαθηματικές έννοιες στην προσχολική εκπαίδευση και η διδασκαλία τους. Αθήνα: Μεταίχμιο. Ηλιοπούλου, Μ. (1998). Παίζω και καταλαβαίνω. Αθήνα: Εκκρεμές. Hughes, M. (1999). Τα παιδιά και η έννοια των αριθμών. Αθήνα: Gutenberg. Kamii, C., & De Clark, G. (1995). Τα παιδιά ξαναεφευρίσκουν την αριθμητική. Προεκτάσεις και εφαρμογές της θεωρίας του Piaget. Εκδόσεις Πατάκη. Kahney, H. (1997). Λύση προβλημάτων. Αθήνα: Ελληνικά Γράμματα. Καφούση, Σ., & Σκουμπουρδή, Χ. (2008). Τα μαθηματικά των παιδιών 4-6 ετών. Αθήνα Εκδόσεις Πατάκη. Kline, M. (1990). Γιατί δεν μπορεί να κάνει πρόσθεση ο Γιάννης. Θεσσαλονίκη: Βάνιας. Κολέζα, Ε. (2009). Θεωρία και πράξη στη διδασκαλία των μαθηματικών. Αθήνα: Τόπος. Κολέζα, Ε. (2006). Μαθηματικά και σχολικά μαθηματικά. Αθήνα: Ελληνικά Γράμματα. Λεμονίδης, Χ. (2013). Μαθηματικά της φύσης και της ζωής. Θεσσαλονίκη: Ζυγός. Λεμονίδης, Χ. (2003). Μια νέα πρόταση διδασκαλίας των μαθηματικών στις πρώτες τάξεις του δημοτικού σχολείου. Αθήνα: Πατάκης. Λεμονίδης, Χ. (1996). Περίπατος στη μάθηση της στοιχειώδους αριθμητικής. Θεσσαλονίκη: Αφοι Κυριακίδη. Nunes, T., & Bryant, P. (2007). Τα παιδιά κάνουν μαθηματικά. Αθήνα: Gutenberg. Polya, G. (1945). How to solve it (μετάφραση στα ελληνικά: Πώς να το λύσω). Princeton: Princeton University Press. Schoenfeld, A.H. (1992). Learning to think mathematically: problem solving, meta-cognition and sense making in mathematics. In D.A. Grouwes (ed.), Handbook of research in mathematics teaching and learning (pp.334-370). NY: Macmillan. Smith, S.P. (2003). Representation in school mathematics: Children’s representations of problems. In J. Kilpatrick, W.G. Martin & D. Schifter (eds.), A research companion to principles and standards for school mathematics (pp. 263-274). Reston, VA: NCTM. Τζεκάκη, Μ. (2010). Μαθηματική εκπαίδευση για την προσχολική και πρώτη σχολική ηλικία. Θεσσαλονίκη: Ζυγός. Τζεκάκη, Μ. (2007). Μικρά παιδιά, μεγάλα μαθηματικά νοήματα: προσχολική και πρώτη σχολική ηλικία. Αθήνα: Gutenberg. Τζεκάκη, Μ. (1998). Μαθηματικές δραστηριότητες για την προσχολική ηλικία. Αθήνα: Gutenberg. Van Cleave’s, J. (1997). Γεωμετρία για παιδιά. Αθήνα: Gutenberg. Van Cleave’s, J. (1996). Μαθηματικά για παιδιά. Αθήνα: Gutenberg. Φιλίππου, Γ. & Χρίστου, Κ. (2000). Διδακτική των μαθηματικών. Αθήνα: Τυπωθήτω, Δαρδανός.
Last Update
20-11-2020