Classical Control Theory

Course Information
TitleΚΛΑΣΙΚΗ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ / Classical Control Theory
Code0433
FacultySciences
SchoolMathematics
Cycle / Level1st / Undergraduate
Teaching PeriodWinter
CommonNo
StatusActive
Course ID40000479

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 221
OrientationAttendance TypeSemesterYearECTS
CoreElective Courses belonging to the selected specializationWinter-5.5

Class Information
Academic Year2021 – 2022
Class PeriodWinter
Faculty Instructors
Weekly Hours3
Class ID
600186985
Course Type 2016-2020
  • Background
  • General Knowledge
  • Scientific Area
  • Skills Development
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Erasmus
The course is also offered to exchange programme students.
Language of Instruction
  • Greek (Instruction, Examination)
Learning Outcomes
Upon the successful completion of this course, the students will : a) be able to describe the behavior of a system in the time and frequency domain, b) be able to simulate the behavior of a system, c) be able to check the stability of a system d) be able to implement techniques for the construction of a controller that will be capable to improve specific characteristics of the system such as the stability, settling time, rise time, maximum overshoot etc.
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Work autonomously
  • Work in teams
  • Advance free, creative and causative thinking
Course Content (Syllabus)
Introduction to the concepts of systems signals and Automatic Control, (brief historical review, basic structure of feedback control, examples) - Mathematical concepts and tools for the study of continuous and discrete time signals and systems (Laplace transform, z-transform, applications, block diagrams and signal flow graphs) - Classification of signals and systems. Continuous and discrete time signals and systems - Time invariance, linearity - Classical analysis of systems and control in the time and frequency domains - Linear time invariant single-input, single-output systems described by ordinary, linear diferential equations - Input output relation and the transfer function description of a linear time invariant system - Free forced and total response of systems in the time domain - Stability of linear time invariant systems and algebraic stability criteria - Routh test for stability - Frequency response of linear time invariant systems - Closed loop systems - Root locus - Nyquist stability Criterion - Stabilizability and Stabilization of systems via precompensation and output feedback - Synthesis of controlers and parametrisation of stabilising controlers.
Keywords
classical control theory, feedback control systems
Educational Material Types
  • Notes
  • Slide presentations
  • Book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
  • Use of ICT in Laboratory Teaching
  • Use of ICT in Communication with Students
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures
Laboratory Work
Tutorial
Total
Student Assessment
Student Assessment methods
  • Written Assignment (Summative)
  • Written Exam with Problem Solving (Summative)
Bibliography
Course Bibliography (Eudoxus)
Βαρδουλάκης Αντώνιος - Ιωάννης, 2011, Εισαγωγή στη Μαθηματική Θεωρία Σημάτων, Συστημάτων και Ελέγχου, ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε. Πουλιέζος Αναστάσιος, 2013, Περί Συστημάτων Ελέγχου, Βαρδουλάκης Αντώνιος - Ιωάννης, ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε. ΒΑΣΙΛΕΙΟΣ ΠΕΤΡΙΔΗΣ, 2008, ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ, ΤΟΜΟΣ Α, Εκδότης : ΒΑΣΙΛΕΙΟΣ ΠΕΤΡΙΔΗΣ Σύγχρονα Συστήματα Αυτομάτου Ελέγχου, 12η Έκδοση, Dorf Richard C.,Bishop Robert H. Συστήματα Αυτόματου Ελέγχου, Shahian B., Savant J.C. JR., Hostetter G.H., Steafani T.R. Συστήματα Αυτομάτου Ελέγχου, Kuo B., Golnaraghi F. Συστήματα Αυτομάτου Ελέγχου, 2016, Norman S. Nise, Εκδόσεις Φούντας.
Additional bibliography for study
Li Quiu and Kemin Zhou, 2010, Introduction to feedback control, Prentice Hall. Hanselman D.C. and B.C. Kuo (1995), Matlab Tools for Control System Analysis and Design. Prentice-Hall; London. Ogata K. (2002). Modern Control Engineering, 4rth Edition, Pearson Education, Prentice-Hall; London. Shahian B. and M. Hassul (1993). Control System Design Using Matlab. Prenti­ce-Hall; London. Richard C. Dorf, Robert H. Bishop, 2003, Σύγχρονα Συστήματα Αυτομάτου Ελέγχου, Εκδόσεις Τζιόλα. Γ. Π. Σύρκος, και Ι.Κ. Κούκος, 2002, Εισαγωγή στη Σχεδίαση Συστημάτων Ελέγχου με το MATLAB, Διαθέτης : Παπασωτηρίου. Ε. Χατζίκος, 2003, Matlab για Μηχανικούς, Εκδόσεις Τζιόλα. E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K.E. Herold, G.C. Walsh, 2005, An engineerʼs guide to Matlab with applications from Mechanecal, Aerospace, Electrical and Civil Engineering, 2nd Ed., Pearson Education Inc., Prentice-Hall; London.
Last Update
15-03-2020