Learning Outcomes
Upon successful completion of the course, students will:
- be able to recognize the qualitative characteristics of time series, e.g. trend, periodicity etc.
- have a comprehensive theoretical background on the basic methods of time series analysis
- have knowledge and critical understanding of the key properties of AR, MA, ARMA and ARIMA models
- can fit time series data to linear stochastic models
- have a comprehensive theoretical background on the basic methods of time series prediction
Course Content (Syllabus)
Time series characteristics, στατιοναριτυ, autocorrelation function, linear stochastic models: AR (p), MA (q), ARMA (p, q), finding the order of a linear model, non-stationary ARIMA models (p, d, q), methodology of Box & Jenkins, methods of predicting time series.
Course Bibliography (Eudoxus)
- Εφαρμοσμένη Στατιστική, Ε. Μπόρα-Σέντα, Π. Μωυσιάδης, Ζήτη, 1990
- Σύγχρονες Μέθοδοι Ανάλυσης Χρονολογικών Σειρών, Σ. Δημέλη, Κριτική, 2013