Gravity and Magnetic Methods of Geophysical Prospecting

Course Information
TitleΒΑΡΥΤΙΚΕΣ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΕΩΦΥΣΙΚΗΣ ΔΙΑΣΚΟΠΗΣΗΣ / Gravity and Magnetic Methods of Geophysical Prospecting
CodeGGP 655E
FacultySciences
SchoolGeology
Cycle / Level1st / Undergraduate
Teaching PeriodSpring
CoordinatorAlexandros Stampolidis
CommonNo
StatusActive
Course ID40001762

Class Information
Academic Year2021 – 2022
Class PeriodSpring
Faculty Instructors
Instructors from Other Categories
Weekly Hours4
Class ID
600192034
Course Type 2016-2020
  • Scientific Area
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
Erasmus
The course is also offered to exchange programme students.
Language of Instruction
  • Greek (Instruction, Examination)
  • English (Instruction, Examination)
Learning Outcomes
1) Understanding the basic principles of Gravity and Magnetic Methods of Geophysical Prospecting. 2) Rough design of a gravity or magnetic survey in relation to the expected subsurface structure. 3) Comprehension of the importance of measuring step in optimizing the scientific result with respect to available means. 4) Understanding the necessity of the reductions applied to gravity and magnetic readings. 5) Understanding the relation of Bouguer anomaly with the density variation at the upper layers of the Earth’s Crust. 6) The student will be able to “read” and qualitatively assess the Bouguer maps. 7) Understanding the relation between magnetic total field anomalies and variations of magnetization at the upper layers of the Earth’s Crust. 8) Understanding the necessity of aeromagnetic surveying at not easily accessible areas. 9) Understanding the way an aeromagnetic survey is carried out. 10) After the successful completion of the course the student will be able to read and qualitatively interpret ground and airborne magnetic maps. 11) Understanding the difference between induced and remanent magnetization. 12) After the successful completion of the course the students will be able to assess if a gravity and/or magnetic survey is needed and what it can be obtained for the solution of geological, geotechnical or archaeological problems. 13) After the successful completion of the course the students will be able to employ gravity and/or magnetic maps for the solution of geological, geotechnical or archaeological problems.
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Generate new research ideas
Course Content (Syllabus)
The Earth's gravity field, General formulae of the gravity field, Newton’s law, gravitational prospecting methods, density if rocks and minerals, measured quantities, measuring instruments, gravity surveying and removal of drift and tidal effects, reductions of gravity measurements and production of Free Air and Bouguer anomalies, regional residual separation, estimations of the density of the near surface layers, processing and interpretation methods. Megnetic method of geophysical prospecting, measured quantities, magnetic susceptibility of rocks and minerals, instruments for magnetic surveying, measuring techniques for the total magnetic field and its spatial derivatives, airborne measurements. Examples from mineral and hydrocarbon exploration, applications in studying the subsurface geological and tectonic setting, applications in Archaeology and environmental studies.
Keywords
Gravity Field of the Earth, Gravitational and Magnetic field measuring instruments, gravitational and magnetic field anomalies
Educational Material Types
  • Notes
  • Slide presentations
  • Book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
  • Use of ICT in Laboratory Teaching
  • Use of ICT in Communication with Students
  • Use of ICT in Student Assessment
Description
Using a computer to solve exercises. Optional software development to solve specific laboratory problems.
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures592.0
Laboratory Work581.9
Exams30.1
Total1204
Student Assessment
Description
Quality management system of the Quality Assurance Unit (MO.DI.P)
Student Assessment methods
  • Written Exam with Extended Answer Questions (Summative)
  • Written Assignment (Formative)
Bibliography
Course Bibliography (Eudoxus)
Παπαζάχος, Β.Κ. Εισαγωγή στη Εφαρμοσμένη Γεωφυσική. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, 1986.. Τσόκας, Γ.Ν., Γεωφυσική διασκόπηση με τις μεθόδους των δυναμικών πεδίων, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, 1999.
Additional bibliography for study
Blakeley, R.J. Potential theory in gravity and magnetic applications. Cambridge University Press, New York, 1995. Boyd, J. Lecture notes on Potential Field methods. Colorado School of Mines, INTERNET address http:/www.mines.edu, 1997. Chapin, D.A. The theory of the Bouguer anomaly: a tutorial. The Leading Edge, 15, 5, 361-363, 1996. Dobrin, M.B. and Savit, C.H. Introduction to geophysical prospecting. McGraw-Hill Book Company, New York , 1988. Garland, G.D. The Earth’s shape and gravity. Pergamon press, Oxford,1977. Parasnis, D.S. Principles of Applied Geophysics, Chapman and Hall, London, Fifth Edition, 1997. Sheriff, R.E. Encyclopedic dictionary of Exploration Geophysics, Society of Exploration Geophysicists, Tulsa, 1981. Telford, W.M., Geldart L.P. and Sheriff, R.E. Applied Geophysics, Cambridge University press, New York, 1993. Tsokas, G.N. and Hansen, R.O. Study of the crustal thickness and the subducting lithosphere in Greece from gravity data. Journal of Geophys. Research, 102, 20585-20597, 1997.
Last Update
08-04-2020