Learning Outcomes
• The knowledge of the basic mathematical programming (Linear and Non-linear) concepts and methods.
• The ability to model a real-world operational problem by the development of the appropriate mathematical programming model.
• The ability to solve mathematical programming models by employing the appropriate operations research methodologies and algorithms.
• The ability to handle data and solve mathematical programming models using computer software.
• The ability to perform sensitivity/"what-if" analyses on the results of operations research problems.
• The ability to interpret the results of an operations research problem's solution.
Course Content (Syllabus)
Introduction to optimization, mathematical programming models, variables, objective function parameters, constraints. Linear programming theory, graphical solution, Simplex method, dual theory, and sensitivity analysis. Transportation algorithm, assignment algorithm, transshipment algorithm. Linear programming problem solving using computer software.Integer programming. Non-linear programming. Classic methods for solving non-linear models (with or without constraints), Karush-Kuhn-Tucker (KKT) conditions. Non-linear programming applications. Multi-objective linear programming. Goal programming. Decision Making.
Course Bibliography (Eudoxus)
1. Παντελής Υψηλάντης, Επιχειρησιακή Έρευνα, 5η έκδοση, 2015, Εκδόσεις Προπομπός
2. Οικονόμου Γεώργιος, Γεωργίου Ανδρέας, Επιχειρησιακή Έρευνα Για Τη Λήψη Διοικητικών Αποφάσεων, 2016, Εκδόσεις Γεωργία Σωτ. Μπένου
3. Anderson D.R., Sweeney D.J., Williams T.A., Kipp M., Διοικητική Επιστήμη, 2014, Εκδόσεις Κριτική.
4. Μανώλης Λουκάκης, Γραμμικός Προγραμματισμός, 2010, Εκδόσεις Σοφία
5. Taha A.H. Εισαγωγή στην Επιχειρησιακή Έρευνα, 10η Έκδοση, 2017, Εκδόσεις Α. Τζιόλα & υιοί ΑΕ
Additional bibliography for study
1. Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research, McGraw-Hill, 9th ed., 2010.
2. Taha, H. A., Operations Research: An Introduction, Pearson Education, 9th ed., 2010.