Learning Outcomes
Upon successful completion of the course, students will:
1. They are familiar with the topics and terminology of Reliability Theory.
2. They can make calculations of reliability parameters of components and systems using analytical formulas and suitable models.
3. Know the common problems of studying space systems reliability and the procedures for dealing with them
4. can do a systematic bibliographic search in scientific sources on the internet
5. can present technical topics in a structured way
Course Content (Syllabus)
Reliability Theory: Basic Concepts, Fault Models, Fault Rate, Reliability Distributions and Functions, Average Life-time, System Structures, Combined Reliability Calculation Methods, Computation using Markov Models of discrete or continuous time and discrete states, Software Reliability, Redundancy and fault tolerance, Reliability estimation. Reliability Prediction with Primary Data Analysis, Fault Trees, FMEA.
Case study: reliability of space systems (hardware / software), FMEA (Failure Mode and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis)
Course Bibliography (Eudoxus)
1)ΚΟΝΤΟΛΕΩΝ Ι., Αξιοπιστία & Ανεκτικότητα Βλαβών Συστημάτων, Εκδόσεις ΑΪΒΑΖΗΣ, 2008, ISBN: 978-960-549-018-8, Κωδικός Βιβλίου στον Εύδοξο: 1243
2)Ι.Λ. Μπακούρος, Αξιοπιστία και Συντήρηση, Εκδόσεις Σοφία, 2010,
ISBN: 978-960-6706-22-6 , Κωδικός Βιβλίου στον Εύδοξο: 1109
Additional bibliography for study
1. K. S. Trivedi, A. Bobbio, Reliability and Availability Engineering: Modeling, Analysis, and Applications, ISBN-10: 1107099501, Cambridge University Press; 2017
2. Elsayed E., Reliability Engineering, Addison Wesley, 1996.
3. O' Connor, P.D.T., Practical Reliability Engineering, Chichester: Wiley, 2012.
4. Sundararajan, C.R. Guide to Reliability Engineering, Van Nostrand Reinhold, 1991.