Learning Outcomes
Upon successful completion of the course, students will:
1) Be able to recognize parametrizations of standard curves and surfaces.
2) Be able to check whether a curve is given with its natural parameter and if not, how to reparametrize it so.
3) Be able to calculate the basic geometric data, like the curvature, of a plane curve.
4) Be able to calculate the basic geometric data, like the curvature and torsion of a space curve.
5) Be able to classify space curves and manipulate the Frenet frame of a space curve.
6) Be able to check whether a parametrization corresponds to a smooth surface and compute its tangent plane.
7) Be able to compute distance between two points on a surface, length of a curve, and angle of two surface curves.
8) Be able to manipulate the basic geometric data of a surface like the normal vector and orientation, the Gauss map and shape operator, the first and second fundamental form, Gauss curvature, and mean curvature.
9) Be able to check which analytical data correspond to smooth surfaces (and in which way).
Course Content (Syllabus)
Theory of Curves: The concept of the curve in the differential geometry. The moving frame. The Frenet formulae. The fundamental theorem (existence and uniqueness). Osculating cycle. Plane curves.
Theory of surfaces: The concept of surface in differential geometry. Curves on a surface. The first and the second fundamental form. Gauss, mean curvature and principal curvatures. Christoffel symbols. The Gauss map and equations of Gauss and Weingarten. Theorema Egregium of Gauss. The fundamental theorem (existence and uniqueness).
Course Bibliography (Eudoxus)
- Σ. Σταματάκη: Εισαγωγή στην Κλασική Διαφορική Γεωμετρία, Θεσσαλονίκη, Εκδόσεις Αϊβάζη, 2008
- Ν. Στεφανίδη: Διαφορική Γεωμετρία, Β’ έκδοση βελτ. και επαυξ. Θεσσαλονίκη, 2014
- A. Pressley: Στοιχειώδης Διαφορική Γεωμετρία.Ηράκλειο : Πανεπιστημιακές Εκδόσεις Κρήτης, 2011
- B. O'Neill: Στοιχειώδης Διαφορική Γεωμετρία, Ηράκλειο : Πανεπιστημιακές Εκδόσεις Κρήτης, 2002
Additional bibliography for study
- M. P. do Carmo: Differential Geometry of Curves and Surfaces. Prentice – Hall, 1976
- J. Oprea: Differential Geometry and its Applications. Prentice Hall, 1997
- Β. Παπαντωνίου: Διαφορική Γεωμετρία, Πάτρα : Εκδόσεις Πανεπιστημίου Πατρών, 1996- 1997
- G. Στάμου: Ασκήσεις Διαφορικής Γεωμετρίας. Εκδόσεις Ζήτη, 1990