Learning Outcomes
To understand the basic building blocks and the functional elements of data, voice and video networks ranging from the plain old wired telephone system to the modern wireless 4th generation data networks. Principles and mathematical modeling of circuit and packet switching. The interconnection of open systems and the underlying communications protocols. Java tools and methods for value-added network applications development.
Course Content (Syllabus)
Mathematical models of computer communications mechanisms. The impairments of physical communications channels. Noisy band-limited channel capacity and the Shannon formula. The reference model for Open Systems Interconnection (OSI/ISO). Circuit switching in Erlang B systems. Packet switching in Erlang C systems. The properties of Poisson and exponential distributions. The flow conservation law and the equilibrium equations. Statistical multiplexing and the M/M/1/∞ system. Noise handling and data link management. ARQ protocols and the M/G/1/∞ system. Point-to-point communication processes and the character and packet based protocols. The HTTP (apache/mozilla) and the UDP (audio streaming) protocols case study. The client-server model. Java network programming and experimental applications in real-time telemetry.
Course Bibliography (Eudoxus)
1. Σημειώσεις διαθέσιμες σε ηλεκτρονική μορφή από το Εικονικό Εργαστήριο του μαθήματος
2. Computer Networks, Andrew Tanenbaum, Pearson Education International
3. Data and Computer Communications, William Stallings, Pearson Education International
4. Queueing Systems, Leonard Kleinrock, Jonh Wiley
5. Telecommunication Networks : Protocols, Modeling and Analysis, Mischa Schwartz, Addison Wesley
6. Java Network Programming, Third Edition, Elliott Rusty Harold, O'Reilly & Associates
7. http://docs.oracle.com/javase/tutorial/index.html