Learning Outcomes
1. Understanding the significance of data analysis in engineering science.
2. Acquaintance with the terms of probability and statistics.
3. Understanding the concepts in the fields of measurement errors, correlation and regression.
4. Acquaintance with computational approaches for the solution of problems in data analysis.
5. Ability of analyzing real data in the computer.
Course Content (Syllabus)
Introduction: definitions, data, examples. Elements of probability and statistics: random variables, univariate and multivariate distributions, distribution parameters, estimation and hypothesis tests for parameters, hypothesis test of distribution goodness of fit. Uncertainty and measurement error: systematic and random errors. Correlation and regression: correlation, simple and multiple regression, linear and nonlinear regression. Computational (resampling) methods in parameter estimation, statistical tests, correlation and regression. Dimension reduction in correlation and regression.
Course Bibliography (Eudoxus)
1. Εισαγωγή στην εξόρυξη δεδομένων, Tan P.-N., Steinbach M., Kumar V., Βερύκιος Βασίλειος (επιμέλεια). Εκδόσεις Τζιόλα & Υιοί, 2018 (2η έκδοση) (Εύδοξος: 77107675).
2. Επιστήμη Δεδομένων: Βασικές Αρχές και Εφαρμογές με Python, Grus J.. Α. Παπασωτηρίου & ΣΙΑ I.K.E., 2020 (Εύδοξος: 94690736).
Additional bibliography for study
1. Statistics and Analysis of Scientic Data [electronic resource], Bonamente M.,
Springer ebooks, 2017 (Εύδοξος: 75492930).
2. Making Sense of Data, A Practical Guide to Exploratory Data Analysis and Data Mining [electronic resource], Myatt G.J., Wiley ebooks, 2014 (2nd edition) (Εύδοξος: 80503623).
3. Resampling Methods: A Practical Guide to Data Analysis, Good P.I., Springer, 2006 (Εύδοξος: 173198)
4. Computational Statistics Handbook with MATLAB, Martinez W.L. and Martinez A.R., Chapman and Hall, 3nd edition, 2015.
5. Exploratory Data Analysis with MATLAB, Martinez W.L. and Martinez A.R., and Solka J., Chapman and Hall, 3rd edition 2017.
6. Statistical Techniques for Data Analysis, Taylor J.K. and Cihon C., Chapman and
Hall, 2nd edition 2004