Learning Outcomes
With the successful completion of the course, students will have become familiar with a) the basic techniques of Machine Learning and Data Mining from economic data and b) Economic Data Analytics, using popular software (Data Visualization, Machine Learning) so that they can respond to the invitations and current trends they will encounter in their later careers.
Course Content (Syllabus)
Τopics that will be presented in the course are the following: Financial and Business problems that are solved through Data Science and Data Mining. Analysis and Visualization of Economic Data using modern software such as Tableau, Qlik Sense, Power BI. Pre-processing data for analysis. Segmentation (decision trees), categorization (SVM, Neural Networks), clustering (hierarchical, KMean) and association rules (Apriori) using software (free Weka software). Performance evaluation of Data Mining solutions. In the Tutoring / Laboratory Department of the course, students will study and get practical experience in the following popular software: Tableau, Weka, Qlik Sense, Power BI.
Keywords
Data Science, Business Analytics, Business Intelligence, Data Visualization, Data Mining, Machine Learning
Course Bibliography (Eudoxus)
1)Εισαγωγή στη Μηχανική Μάθηση, Alpaydin Ethem, 2022 (προτεινόμενο)
2) Η Επιστήμη των Δεδομένων Για Επιχειρήσεις, Foster Provost, Tom Fawcett, εκδ. Κλειδάριθμος 2019.
3) Επιστήμη Δεδομένων: Βασικές Αρχές και Εφαρμογές με Python, 2η Έκδοση, Grus Joe, εκδ. Α. Παπασωτηρίου & Σια Ι.Κ.Ε. 2020.
4)Μηχανική Μάθηση, Κων/νος Διαμαντάρας, Δημήτρης Μπότσης, εκδ. Κλειδάριθμος 2019.