Course Information
TitleΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ / Statistical Inference
Code0569
FacultySciences
SchoolMathematics
Cycle / Level1st / Undergraduate
Teaching PeriodSpring
CommonNo
StatusActive
Course ID40002430

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 0
OrientationAttendance TypeSemesterYearECTS
CoreElective Courses845

Class Information
Academic Year2019 – 2020
Class PeriodSpring
Weekly Hours3
Class ID
600153857
Type of the Course
  • Scientific Area
Course Category
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
Language of Instruction
  • Greek (Instruction, Examination)
Prerequisites
Required Courses
  • 0502 Probability Theory I
  • 0505 Probability Theory II
  • 0534 Mathematical Statistics
General Prerequisites
Probability theory, Mathematical Statistics
Learning Outcomes
The aim is to give the mathematical background of the methods taught in the obligatory course "Statistics" .
General Competences
  • Apply knowledge in practice
  • Make decisions
  • Work autonomously
  • Work in teams
  • Generate new research ideas
  • Advance free, creative and causative thinking
Course Content (Syllabus)
Introduction to testing hypothesis - Selecting the test procedure - Testing simple hypothesis - Neyman-Pearson’s fundamental lemma - Uniformly most powerful tests - Tests for the parameters of one or two normal populations - Likelihood ratio tests. Tests for the parameters of the general linear model.
Keywords
hypothesis, tests, Neyman-Pearson’s lemma, Likelihood ratio tests
Educational Material Types
  • Book
  • e-book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Communication with Students
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures
Tutorial
Total
Student Assessment
Student Assessment methods
  • Written Assignment (Formative, Summative)
  • Written Exam with Problem Solving (Formative)
  • midterms
Bibliography
Course Bibliography (Eudoxus)
Δαμιανού, Χ. & Κούτρας Μ. (1998). Εισαγωγή στη Στατιστική ΙΙ. Εκδόσεις Συμμετρία, Αθήνα. [45264] Κολυβά-Μαχαίρα, Φ. (1985). Μαθηματική Στατιστική, Τόμος Ι, Εκτιμητική. Εκδόσεις Ζήτη, Θεσσαλονίκη. [11098] Κολυβά-Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο στο: http://hdl.handle.net/11419/1899320117. [320117] Παπαϊωάννου, Τ. & Φερεντίνος, Κ. (2002). Μαθηματική Στατιστική, 2η Έκδοση. Εκδόσεις Σταμούλη, Αθήνα. [22888]
Additional bibliography for study
Bickel, P. J. & Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day Inc. Casella , G. & Berger, J. O. (2001). Statistical Inference, 2nd Edition. Brooks Cole. Fraser, D. A. (1967). Statistics: An Introduction. John Wiley & Sons Inc. Graybill, F. A. (1974). Introduction to the Theory of Statistics, 3rd edition. McGraw Hill. Hogg, R. V. & Tanise, E. A. (1977). Probability and Statistical Inference. Collier-MacMillan International Editions. Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco. Lehmann, E. L. (1983). Theory of Point Estimation. John Wiley and sons, Inc., New York. Mood, A., Graybill, F. & Boes, D. (1974). Introduction to the Theory of Statistics, 3rd edition. McGraw Hill. Rao, C. R. (2008). Linear Statistical Inference and its Applications, 2nd edition. Wiley Series on Probability and Statistics. Rice, J. A.(1994). Mathematical Statistics and Data Analysis, 2nd edition. Duxbury Press. Roussas, G. (2003). An Introduction to Probability and Statistical Inference. Academic Press. An imprint of Elsevier Science.
Last Update
27-05-2016