Course Content (Syllabus)
Analytical Dynamics: generalized coordinates, motion constraints, principle of virtual work, Lagrange’s equations, Hamilton’s principle, Hamilton’s canonical equations.
Numerical solution of systems of linear and nonlinear algebraic equations (determination of static response, kinematics of mechanisms, direct determination of periodic steady-state motions).
Numerical integration of the equations and equations of motion of mechanical systems and structures (systems of differential equations and differential-algebraic equations).
Evaluation of natural frequencies and modes of complex structures.
Applications from the area of rigid body dynamics and machine dynamics (mass balancing of reciprocating engines, power flow smoothing – flywheels, application of multibody dynamics software).
Course Bibliography (Eudoxus)
Σ. Νατσιάβας, “Ταλαντώσεις Δυναμικών Συστημάτων με μη Γραμμικά Χαρακτηριστικά,” Εκδόσεις Ζήτη, Θεσσαλονίκη, 2000.
Σ. Νατσιάβας, “Εφαρμοσμένη Δυναμική,” Εκδόσεις Ζήτη, Θεσσαλονίκη, 1999.
Ε. Παπαμίχος, “Αριθμητικές μέθοδοι επίλυσης διαφορικών εξισώσεων με εφαρμογές στη μηχανική,” Εκδόσεις Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε., Θεσσαλονίκη, 2005.
C. Pozrikidis, “Αριθμητικές υπολογιστικές μέθοδοι στην επιστήμη και τη μηχανική,” Εκδόσεις Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε., Θεσσαλονίκη, 2006.
Additional bibliography for study
Bauchau, O.A., 2011. Flexible Multibody Dynamics. Springer Science+Business Media B.V., London.
Geradin, M., Cardona, A., 2001. Flexible Multibody Dynamics. John Wiley & Sons, New York.
Greenwood, D.T., 1988. Principles of Dynamics. Prentice-Hall Inc., Englewood Cliffs, New Jersey.
Nayfeh, A.H., Balachandran, B., 1995. Applied Nonlinear Dynamics. Wiley-Interscience, New York.
Shabana, A.A., 2005. Dynamics of Multibody Systems, third ed. Cambridge University Press, New York.