Learning Outcomes
In brief, the understanding of the physical quantities, properties and methods of the electrostatic field and the steady state current flow field as well as the behavior of materials in their presence, based on the macroscopic model of classical electromagnetism.
More specifically:
1. Description of electrostatic field sources and their physical interpretation. Comprehension and assimilation of electrostatic field fundamentals. Familiarization with the macroscopic model and the behavior of perfect conductors and perfect dielectrics (insulators) in the electrostatic field.
2. Comprehension of point, differential, and integral quantities in conjunction with the laws of the electrostatic field.
3. Description of steady state current flow field sources and their physical interpretation.
4. Foundation, proof and assimilation of the fundamental quantities and properties of the steady state current flow field.
5. Investigation of the model and operating principles of ideal grounded electrodes configurations and the movement of charged particles in the electrostatic field.
Course Content (Syllabus)
Nature of electrostatic field: Charges and charge density distributions. Electric field intensity, electric scalar potential, dielectric displacement, electric flux. Fundamental laws of electrostatic field. Poisson and Laplace equations. Boundary conditions on interfaces.
Dielectric media: Electric dipole. Dielectric polarisation. Polarisation charges. Forces on dielectric materials.
Perfect conductors: Conducting bodies. Cavities in conducting bodies. Green's reciprocity theorem. Capacitors, capacitance, partial capacitances.
Energy and forces: Electrostatic energy. Forces on systems of conductors. Charged particles moving in electrostatic field.
Analytical methods: Uniqueness theorem. Method of electric images. Separation of variables method. Other methods.
Electric field from steady state current flow.
Nature of current flow field: Intensity and density of electric current. Continuity equation. Boundary conditions. Electromotive force. Resistance. Ohm's law. Kirchhoff's laws. Resistance of a conductor of variable cross-section. Lossy capacitor.
Energy: Joule's law. Theorem of minimum thermal losses. Power density.
Grounded electrodes: Spherical, hemispherical, prolate spheroidal, rod.
Course Bibliography (Eudoxus)
1. Θ. Δ. Τσιμπούκης, Ηλεκτρομαγνητικό Πεδίο - Βασική Θεωρία και Εφαρμογές, Τόμος Ι, ΙΤΕ-Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 2011 (ISBN: 978-960-524-325-8).
2. Ι. Ρουμελιώτης και Ι. Τσαλαμέγκας, Ηλεκτρομαγνητικά Πεδία, Τόμος Β, Εκδόσεις Α. Τζιόλα & Υιοί Α.Ε., Θεσσαλονίκη, 2010 (ISBN: 978-960-418-292-3).
3. J. Kraus, Ηλεκτρομαγνητισμός, 5η εκδοση, Εκδόσεις Α. Τζιόλα & Υιοί Α.Ε., Θεσσαλονίκη, 2011 (ISBN:978-960-418-334-0).
4. Ι. Λ. Βομβορίδης, Ηλεκτρομαγνητικά Πεδία, Μέρος Β, Εκδόσεις Συμεών, Αθήνα, 2009 (ISBN: 978-960-788-95-2).
Additional bibliography for study
1. D. J. Griffiths, Introduction to Electrodynamics, ΙΤΕ-Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 2012.
2. J. G. Van Bladel, Electromagnetic Fields, 2nd edition, Wiley-IEEE Press, 2007.
3. R. E. Collin, Field Theory of Guided Waves, 2nd edition, Wiley-IEEE Press, 1990.
4. J. R. Jackson, Classical Electrodynamics, 3rd edition, Wiley, 1998.