Mathematical Programming

Course Information
TitleΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Mathematical Programming
Code0501
FacultySciences
SchoolMathematics
Cycle / Level1st / Undergraduate
Teaching PeriodSpring
CommonNo
StatusActive
Course ID40000519

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 347
OrientationAttendance TypeSemesterYearECTS
CoreCompulsory Course215.5

Class Information
Academic Year2015 – 2016
Class PeriodSpring
Faculty Instructors
Instructors from Other Categories
Weekly Hours3
Class ID
600004832
Type of the Course
  • Scientific Area
Course Category
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
Language of Instruction
  • Greek (Instruction, Examination)
Prerequisites
Required Courses
  • 0101 Linear Algebra I
General Prerequisites
Elements of Linear Algebra
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Make decisions
  • Design and manage projects
  • Advance free, creative and causative thinking
Course Content (Syllabus)
Mathematical models. Linear programming. Graphical solution and graphical analysis of the sensitivity of the linear model. Simplex method. Introduction to Integer Programming. Transportation problem. Principles of dynamical programming. Non-linear methods of optimization. Applications.
Keywords
Linear programming, Simplex method, Dynamical programming.
Educational Material Types
  • Book
Use of Information and Communication Technologies
Description
Learning basic knowledge of the theory of mathematical programming. Learning how to model linear problems. Solving linear problems using the Simplex method. Solving problems using Dynamic Programming techniques. Practising to modelling by applying tools of mathematical programming.
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures391.3
Total391.3
Student Assessment
Description
Written examination
Student Assessment methods
  • Written Exam with Problem Solving (Formative, Summative)
Bibliography
Course Bibliography (Eudoxus)
Εισαγωγή στην Επιχειρησιακή ΄Ερευνα, Αλγόριθμοι & Εφαρμογές, Π.-Χ. Βασιλείου, Ν. Τσάντα. Γραμμικός Προγραμματισμός Θεωρία και Ασκήσεις, Σ. Κουνιά, Δ. Φακίνου.
Last Update
20-09-2013