Learning Outcomes
Upon completion of this course, students will have:
1) knowledge of the decisions that need to be made when designing and setting up an experiment;
2) knowledge of the options available to them for statistical analysis;
3) practical skills for undertaking those analyses;
4) Critical thinking skills relative to the biological meaning and interpretation of the results of the statistical analyses;
5) the ability to present their findings in a style appropriate to the scientific literature.
Course Content (Syllabus)
Introduction to agricultural experimentation. Aims of experiments in agriculture. Field experiments, greenhouse experiments, lab experiments. Methodology for setting up agricultural experiments. Randomization, replication, blocking. Intoduction to Analysis of Variance (ANOVA). Statistical hypothesis testing procedures. Experimental error. Completely Randomized Design. Comparisons of means. Randomized Complete Block Design. Latin Square Design. Factorial experiments. Main effects and interactions between factors. Introduction to Linear Regression. Data transformations. Examples and applications. Demonstration of statistical softwares. Practice for designing field experiments.
Additional bibliography for study
1) Μενεξές, Γ. (2007). Μια Δομημένη Προσέγγιση στην Πολυμεταβλητή Στατιστική Ανάλυση Βιολογικών, Περιβαλλοντικών, Κοινωνικών και Οικονομικών Δεδομένων. Στο Φυσικοί Πόροι, Περιβάλλον και Ανάπτυξη (σσ. 519-534). Επιμέλεια: Γ. Αραμπατζής και Σ. Πολύζος. Θεσσαλονίκη: Εκδόσεις Τζιόλα.
2) Μενεξές, Γ. & Οικονόμου, Α. (2002). Σφάλματα και Παρανοήσεις στους Στατιστικούς Ελέγχους Υποθέσεων: Υπέρβαση μέσω της Ανάλυσης Δεδομένων. Τετράδια Ανάλυσης Δεδομένων-Data Analysis Bulletin, 2, 52-64.