Learning Outcomes
The aim and objective of this course is the close examination of topics of particular interest to mechanical engineers. The development and the approach are based on specific considerations which pay particular attention to the application of thermodynamic principles on specific technical problems An introductory discussion of equilibrium is given before the development of the topic of reaction dynamics, and of combustion in particular, since it is the most important process in the operation of thermal internal combustion engines, of gas turbines, of boilers, of rocket propellants, and several other energy installations. Τhe main scope is the exploitation/improvement of fuel chemical energy and the control of incomplete combustion products
After the course, the student might have integrated approaches of the principles and of applications of Thermodynamics in the science of Mechanical Engineer, based on examples and specific applications. Further, she/he might have acquired all the knowledge necessary for further developments and amendments.
Course Content (Syllabus)
Equilibrium thermodynamics. Functions of Gibbs and Helmholtz. Thermodynamic properties of systems of constant chemical composition, ideal gases and mixtures. Thermodynamic properties of gaseous systems of variable composition. Chemical potential and chemical equilibrium, chemical reactions, combustion, dissociation, frozen flow and equilibrium flow, thermodynamics of special systems (e.g. fuel cells), equilibrium of ideal solutions (laws of Raoult and Henry), elements of chemical kinetics in homogeneous and heterogeneous reactions.
Keywords
Equilibrium, systems of constant and variable chemical composition, Chemical potential and chemical equilibrium, combustion, dissociation
Course Bibliography (Eudoxus)
1. Benson, H.S.,
2. Cengel, Y.A., and Boles, M.A., Θερμοδυναμική για Μηχανικούς, Εκδόσεις Τζιόλα
Additional bibliography for study
1. Gyftopoulos,E.P., and Beretta, G.P., Θερμοδυναμική. Θεμελιώδεις αρχές και εφαρμογές, Εκδόσεις Τζιόλα.
2. Abbott, Μ.Μ and Van Ness, H.C., Θερμοδυναμική, ΕΣΠΙ Εκδοτική
3. Howell, J.R and Buckius, R.O, Fundamentals of Engineering Thermodynamics, McGraw-Hill.
4. Winterbone, D.E., and Turan, A., Advanced Thermodynamics for Engineers, Butterworth-Heinemann