Course Content (Syllabus)
Analytical Dynamics (generalized coordinates, motion constraints, principle of virtual work, d’Alembert’s principle, Lagrange’s equations, Hamilton’s principle, Hamilton’s canonical equations). Numerical solution of kinematical equations and equations of motion of mechanical systems and structures. Systems of algebraic equations, eigenproblems and systems of differential equations. Direct determination of constant and periodic steady-state motions. Applications from the area of rigid body dynamics and machine dynamics (mass balancing of reciprocating engines, power flow smoothing – flywheels, rotordynamics).
Course Bibliography (Eudoxus)
Σ. Νατσιάβας, “Ταλαντώσεις Δυναμικών Συστημάτων με μη Γραμμικά Χαρακτηριστικά,” Εκδόσεις Ζήτη, Θεσσαλονίκη, 2000.
Σ. Νατσιάβας, “Εφαρμοσμένη Δυναμική,” Εκδόσεις Ζήτη, Θεσσαλονίκη, 1999.
Additional bibliography for study
Bauchau, O.A., 2011. Flexible Multibody Dynamics. Springer Science+Business Media B.V., London.
Geradin, M., Cardona, A., 2001. Flexible Multibody Dynamics. John Wiley & Sons, New York.
Greenwood, D.T., 1988. Principles of Dynamics. Prentice-Hall Inc., Englewood Cliffs, New Jersey.
Nayfeh, A.H., Balachandran, B., 1995. Applied Nonlinear Dynamics. Wiley-Interscience, New York.
Shabana, A.A., 2005. Dynamics of Multibody Systems, third ed. Cambridge University Press, New York.