Learning Outcomes
Should be able to solve an optimal control problem using calculus of variations.
Should be able to design a linear quadratic controller in the continuous and digital domain.
Should be able to design an optimal state estimator and incorporate it in a control system.
Should be able to design a linear and non-linear model-predictive controller.
Course Content (Syllabus)
1. Overview of automatic control principles
2. Optimal control problem formulation
Performance index selection – Constraints
3. Variational calculus in optimal control problems
Unconstrained and constrained problems
4. Linear quadratic control
Disturbance rejections and set-point tracking problems
5. Introduction to digital systems
z-transform – digital transfer function
Stability of digital systems – Digital PID
6. Control systems design in state space
Controllability and observability
State feedback – Observers and Kalman filters
7. Model predictive control
Linear and non-linear systems
Numerical solution and practical implementation
Keywords
optimal control, linear quadratic control, model predictive control, optimal state estimation
Course Bibliography (Eudoxus)
Α. Vincent T. L. και W. J. Grantham, Μη Γραμμικά Συστήματα Αυτόματου Ελέγχου και Βέλτιστος Έλεγχος. Εκδόσεις Τζιόλα, 2001.
Β. Παρασκευόπουλος Π. Ν., Βέλτιστος Έλεγχος, Φίλτρο Kalman, Στοχαστικός Έλεγχος, Αθήνα, 2004, σελ. 395, ISBN 960-91281-8-1.
Γ. Καραμπετάκης Ν., Βέλτιστος έλεγχος, 2010.
Additional bibliography for study
1. Strengel R.F., Optimal control and estimation, Dover, 1994.
2. Zhou K., Robust and optimal control, Prentice Hall, 1996.
3. Goodwin G. C., Graebe S. F., Salgado M. E., Control System Design, Prentice Hall, 2001.
4. Παρασκευόπουλος Π.Ν., Αναγνώριση Συστημάτων και Προσαρμοστικός Έλεγχος, Αθήνα, 1992, σελ. 406, ISBN 960-91281-7-3.
5. Franklin G. F., J. D. Powell, Μ. Workman, Digital Control of Dynamic Systems, Prentice Hall, 2002.
6. Ogata K., Discrete-time Control Systems, Prentice-Hall, 1987.