Learning Outcomes
Upon the completion of the course, the students are expected to have
1) learned the main techniques of numerical analysis,
2) obtained experience in solving typical problems in physics with numerical methods,
3) practiced the implementation of algorithms of numerical analysis with programming languages.
Course Content (Syllabus)
The course deals with numerical and approximative methods of solving mathematical problems that are frequently met in Physics: Root finding and solution of nonlinear equations. Linear systems and matrices. Finite differences discretization and numerical derivatives. Numerical calculations of definite integrals. Numerical solutions of ordinary differential equations - error analysis and convergence. Introduction to numerical solution methods for partial differential equations. Computer applications of the above methods.
Course Bibliography (Eudoxus)
Βιβλίο [68373915]: Αριθμητικές Μέθοδοι και Εφαρμογές για Μηχανικούς, 4η Έκδοση, Σαρρής Ι.- Καρακασίδης Θ.
Βιβλίο [59366700]: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, ΑΚΡΙΒΗΣ Γ.Δ., ΔΟΥΓΑΛΗΣ Β.Α.
Additional bibliography for study
1. Lecture Notes in Basic Computational Numerical Analysis, J. M. McDonough, http://web.engr.uky.edu/~acfd/egr537-lctrs.pdf
2. Lecture Notes on Numerical Analysis, P. J. Olver, http://www-users.math.umn.edu/~olver/num.html