Algebraic Structures II

Course Information
TitleΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΙΙ / Algebraic Structures II
CodeΝ0107Α
FacultySciences
SchoolMathematics
Cycle / Level1st / Undergraduate
Teaching PeriodWinter/Spring
CommonYes
StatusActive
Course ID600019633

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 8
OrientationAttendance TypeSemesterYearECTS
CoreCompulsory CourseWinter/Spring-6

Class Information
Academic Year2021 – 2022
Class PeriodWinter
Faculty Instructors
Instructors from Other Categories
Weekly Hours4
Class ID
600186958
Course Type 2016-2020
  • Scientific Area
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Language of Instruction
  • Greek (Instruction, Examination)
Prerequisites
Required Courses
  • 0102 Introduction to Algebra
  • 0106 Algebraic Structures I
  • 0108 Linear Algebra
  • 0110 ELEMENTS OF LINEAR ALGEBRA
Learning Outcomes
Upon successful completion of the course the students i) will recognize the algebraic structures of rings and fields ii) will be able to handle general rings and especially polynomila rings iii) will be able to do computations with ideals iv) will be able to apply the isomorphism theorems v) will be able to study factorization problems in integral domains vi) will be able to do simple computationw with rings and field extesnsions
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Make decisions
  • Work autonomously
  • Work in teams
  • Be critical and self-critical
  • Advance free, creative and causative thinking
Educational Material Types
  • Notes
  • Video lectures
  • Book
Use of Information and Communication Technologies
Use of ICT
  • Use of ICT in Course Teaching
  • Use of ICT in Communication with Students
  • Use of ICT in Student Assessment
Course Organization
ActivitiesWorkloadECTSIndividualTeamworkErasmus
Lectures391.3
Reading Assigment1254.2
Tutorial130.4
Exams30.1
Total1806
Student Assessment
Student Assessment methods
  • Written Exam with Short Answer Questions (Formative, Summative)
  • Written Exam with Extended Answer Questions (Formative, Summative)
  • Written Exam with Problem Solving (Formative, Summative)
Bibliography
Course Bibliography (Eudoxus)
- Αλγεβρικές Δομές II του Ε. Ψωμόπουλου. - Εισαγωγή στην Άλγεβρα του J. Fraleigh. - Μία εισαγωγή στην άλγεβρα, Βάρσος Δ, Δερζιώτης Δ, Εμμανουήλ Γ., Μαλιάκας Μ., Ταλέλλη Ο. - Εισαγωγή στην Άλγεβρα, Ανδρεαδάκης, Αθανασόπουλος - Άλγεβρα, Πουλάκης Δημήτριος Μ. - Επανάληψη στην Άλγεβρα, Michael Holz - Μία Εισαγωγή στη Βασική Αλγεβρα [electronic resource], Α. Μπεληγιάννης, kallipos.gr - Ασκήσεις Βασικής Αλγεβρας, Α. Μπεληγιάννης. Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, 2016
Last Update
22-07-2020