Learning Outcomes
Expected learning outcomes
Upon successful completion of the course’s students will be able to:
• To make decisions and design experiments from the field of Agricultural Sciences and more generally from the field of Biological Sciences.
• To organize the data properly.
• Properly encode the data.
• To enter the data in PC properly.
• To choose the appropriate method of statistical analysis.
• To acquire practical skills and abilities in the use of statistical packages and in the performance of statistical analyzes.
• Develop critical thinking about the biological significance and interpretation of the results of statistical analysis.
• To communicate and collaborate with researchers from other scientific fields.
• Learn to present and comment on the numerical and diagrammatic outputs of statistical methods.
• To develop the ability to present the results of an experiment in a format suitable for disseminating the results to the scientific community.
• To apply knowledge in practice.
Course Content (Syllabus)
Content
1. Introduction to Descriptive and Inferential Statistics.
2. Introduction to Variance Analysis and Linear Regression.
3. Introduction to Experimentation. Introduction to Agricultural Experimentation. Purpose of Agricultural Experimentation. Experiments in the field, experiments in the greenhouse, experiments in the laboratory. Randomize, repeat, create groups. Experimental plans and strategies for the statistical processing of the respective data.
4. Exercise of designing experiments in practice.
5. Data Organization and Coding.
6. Data transformations.
7. Examples - Applications. Demonstration of the use of several statistical packages.
8. Learning to use MS Excel for data entry and statistical processing.
9. Learning to use the IBM SPSS statistical package for data entry and statistical processing.
10. Learning to use the R programming language for data entry and statistical processing.
11. Examples - statistical data processing applications using statistical packages.
12. Construction of statistical charts using statistical packages.
13. Presentation and commentary on the arithmetic and diagrammatic outputs of statistical methods.
14. Practical exercise of data analysis from agricultural experiments and in general from experiments of Biological Sciences.
Additional bibliography for study
(1) Μενεξές, Γ. (2007). Μια Δομημένη Προσέγγιση στην Πολυμεταβλητή Στατιστική Ανάλυση Βιολογικών, Περιβαλλοντικών, Κοινωνικών και Οικονομικών Δεδομένων. Στο Φυσικοί Πόροι, Περιβάλλον και Ανάπτυξη (σσ. 519-534). Επιμέλεια: Γ. Αραμπατζής και Σ. Πολύζος. Θεσσαλονίκη: Εκδόσεις Τζιόλα.
(2) Μενεξές, Γ. & Οικονόμου, Α. (2002). Σφάλματα και Παρανοήσεις στους Στατιστικούς Ελέγχους Υποθέσεων: Υπέρβαση μέσω της Ανάλυσης Δεδομένων. Τετράδια Ανάλυσης Δεδομένων-Data Analysis Bulletin, 2, 52-64.
(3) Μενεξές, Γ. (2013). Οδηγός Ανάλυσης Παραλλακτικότητας Δεδομένων Γεωργικών Πειραμάτων με Στατιστικά Πακέτα. Εκπαιδευτικές Σημειώσεις.