Number Theory

Course Information
TitleΘΕΩΡΙΑ ΑΡΙΘΜΩΝ / Number Theory
Cycle / Level1st / Undergraduate
Teaching PeriodSpring
Course ID40002474

Programme of Study: UPS of School of Mathematics (2014-today)

Registered students: 236
OrientationAttendance TypeSemesterYearECTS
CoreElective Courses belonging to the selected specializationSpring-5.5

Class Information
Academic Year2017 – 2018
Class PeriodSpring
Instructors from Other Categories
Weekly Hours3
Class ID
Course Type 2016-2020
  • Scientific Area
Course Type 2011-2015
Specific Foundation / Core
Mode of Delivery
  • Face to face
Digital Course Content
The course is also offered to exchange programme students.
Language of Instruction
  • Greek (Instruction, Examination)
  • English (Instruction, Examination)
Required Courses
  • 0102 Introduction to Algebra
  • 0106 Algebraic Structures I
Learning Outcomes
With the successful fullfilled of the course the students get self-activation and increase their ability to solve comlpicate unknown problems.
General Competences
  • Apply knowledge in practice
  • Retrieve, analyse and synthesise data and information, with the use of necessary technologies
  • Adapt to new situations
  • Make decisions
  • Work autonomously
  • Generate new research ideas
  • Respect natural environment
  • Demonstrate social, professional and ethical commitment and sensitivity to gender issues
  • Be critical and self-critical
  • Advance free, creative and causative thinking
Course Content (Syllabus)
Linear congruents modulo n. Systems of linear congruents . Euler function. Arithmetic multiplicative functions. Polynomial congruents, Diophantic equations. Pythagorean Triples. Fermat’s Theorem for n=4. Quadratic residues. Quadratic reciprocity low. Quadratic number fields. Unsolved problems.
modn, congruents, arithmetic functions, quadtatic residues, quadratic reciprocity lows, Diophantic equations, quadratic number fields.
Educational Material Types
  • Notes
  • Book
Course Organization
Student Assessment
Written examinations οf progress and final written examinations. Information is given during the first lecture.
Student Assessment methods
  • Written Exam with Multiple Choice Questions (Formative)
  • Written Exam with Short Answer Questions (Formative)
  • Written Assignment (Formative, Summative)
  • Written Exam with Problem Solving (Formative)
Course Bibliography (Eudoxus)
1. Θεωρία αριθμών, Δ.Μ. Πουλάκης, ISBN: 960-431-429-7, ΖΗΤΗ, 1997 2. Μία Εισαγωγή στη Θεωρία Αριθμών, Δ. Δεριζιώτης, ISBN: 978-960-6706-44-8, ΣΟΦΙΑ, 2012 3. Θεωρία αριθμών, Π. Τσαγκάρης, ISBN: 978-960-266-143-7, ΑΘΑΝΑΣΟΠΟΥΛΟΣ, 2010 4. Θεωρία Αριθμών και Εφαρμογές, Ι.Αντωνιάδης, Α. Κοντογεώργης, ISBN: 978-618-82124-5-9, [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, ID Ευδόξου: 320067 5. Υπολογιστική Θεωρία Αριθμών, Δ. Πουλάκης, ISBN: 978-960-603-127-4, [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, ID Ευδόξου: 320067¬¬¬
Additional bibliography for study
J. Fraleigh, Eισαγωγή στην Άλγεβρα, Πανεπιστημιακές Εκδόσεις Κρήτης
Last Update