Learning Outcomes
Students should be in position to carry-out the material and energy balance s in any physical or chemical process. Specifically, students will be able to:
1. transform units of various variables
2. calculate degree of freedom in solving a problem
3. set up and solve a mass balance problem, with or without combustion, recycle, reaction
4. set up and solve energey balance problems alone or in combination with mass balance equations
5. read and understand phase diagrams, phase changes, gas properties, psychrometric charts
6. apply mass and energy conservation principles in industrial cases (food, chemical, pharma etc.)
Course Content (Syllabus)
MASS AND ENERGY BALANCES
Material balances and definitions. Simple flow sheets. Combustion and excess air. Elements of phase equilibria. Equations of state. Critical and reduced T and P. Compressibility factor (Z). Pure gases and gas mixtures. Partial pressure. Humid-ity; steam tables; drying and humidification processes. Energy balances. Defini-tions (work, heat, energy, enthalpy, specific heat). Enthalpy calculations. Phase change and ΔH calculations. Generalized energy balance. Enthalpy of reaction. Reactions at T, P other than standard. Enthalpy of dilution and of mixing. Com-bined mass and energy balances. Distillation. Degrees of freedom. Enthalpy – concentration diagrams. Humidification – dehumidification – cooling diagrams. Applications. Non-steady state mass and energy balances. Simple non-steady state mass balances, mixing, distillation, reaction. Simple non-steady state energy bal¬ances, heat transfer. Simple applications and examples.
Students are required to attend a computer lab on the use of Aspen Plus. Students are required to submit 2-3 project reports. They count 20% in final grade. Esti-mated time per project, about 10 hours. A mid-term exam is optional, and counts 30% in final grade
Course Bibliography (Eudoxus)
D.M.Himmelblau (Μετάφραση Γ.Π.Σακελλαρόπουλος, Βασικές Αρχές και Υπολογισμοί στη Χημική Μηχανική
D.M.Himmelblau , J.B.Riggs , “Βασικές Αρχές και Υπολογισμοί στη Χημική Μηχανική”, 7η Εκδοση (Μετάφραση Γ.Μαρνέλος), Εκδ. Τζιόλα (2006)