Learning Outcomes
Upon successful completion of the course, students will be able to:
1) Use the notion of covariant derivative between vector fields and understand its functionality on a surface.
2) Compute and identify geodesic curves of a surface. They will also be able to ompute the geodesic curvature.
3) Apply the Gauss - Bonnet Theorem.
4) Distinguish between the spaces of constant curvature and their individual features.
5) Demonstrate these features on the basic models of such spaces.
Course Content (Syllabus)
Reminder of basic constructions of Differential Geometry (principal and mean curvature, Gauss curvature, normal and geodesic curvature), covariant derivative and geodesic curves, length functional, Clairaut's Theorem, local and global Gauss-Bonnet Theorem, surfaces of constant curvature, topological structure of surfaces, Euler characteristic.
Course Bibliography (Eudoxus)
- A. Pressley: Στοιχειώδης Διαφορική Γεωμετρία.Ηράκλειο : Πανεπιστημιακές Εκδόσεις Κρήτης, 2011
- B. O'Neill: Στοιχειώδης Διαφορική Γεωμετρία, Ηράκλειο : Πανεπιστημιακές Εκδόσεις Κρήτης, 2002
- Α. Αρβανιτογεώργος: Στοιχειώδης Διαφορική Γεωμετρία, Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, 2015
- Σ. Σταματάκης: Εισαγωγή στην Κλασική Διαφορική Γεωμετρία, Θεσσαλονίκη, Εκδόσεις Αϊβάζη, 2008
- Δ. Κουτρουφιώτης: Στοιχειώδης διαφορική γεωμετρία, Αθήνα : Leader Books, 2006
Additional bibliography for study
- M. Abate, F. Tovena: Curves and Surfaces. Springer, 2012
- M. P. do Carmo: Differential Geometry of Curves and Surfaces. Prentice – Hall, 1976
- J. Oprea: Differential Geometry and its Applications. Prentice Hall, 1997